Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 35(3): ar36, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38170579

RESUMO

Transporting epithelial cells of the gut and kidney interact with their luminal environment through a densely packed collection of apical microvilli known as a brush border (BB). Proper brush border assembly depends on the intermicrovillar adhesion complex (IMAC), a protocadherin-based adhesion complex found at the distal tips of microvilli that mediates adhesion between neighboring protrusions to promote their organized packing. Loss of the IMAC adhesion molecule Cadherin-related family member 5 (CDHR5) results in significant brush border defects, though the functional properties of this protocadherin have not been thoroughly explored. Here, we show that the cytoplasmic tail of CDHR5 contributes to its correct apical targeting and functional properties in an isoform-specific manner. Library screening identified the Ezrin-associated scaffolds EBP50 and E3KARP as cytoplasmic binding partners for CDHR5. Consistent with this, loss of EBP50 disrupted proper brush border assembly with cells exhibiting markedly reduced apical IMAC levels. Together, our results shed light on the apical targeting determinants of CDHR5 and further define the interactome of the IMAC involved in brush border assembly.


Assuntos
Células Epiteliais , Protocaderinas , Microvilosidades/metabolismo , Células Epiteliais/metabolismo
2.
Mol Biol Cell ; 32(21): ar30, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34473561

RESUMO

MyTH4-FERM (MF) myosins evolved to play a role in the creation and function of a variety of actin-based membrane protrusions that extend from cells. Here we performed an analysis of the MF myosins, Myo7A, Myo7B, and Myo10, to gain insight into how they select for their preferred actin networks. Using enterocytes that create spatially separated actin tracks in the form of apical microvilli and basal filopodia, we show that actin track selection is principally guided by the mode of oligomerization of the myosin along with the identity of the motor domain, with little influence from the specific composition of the lever arm. Chimeric variants of Myo7A and Myo7B fused to a leucine zipper parallel dimerization sequence in place of their native tails both selected apical microvilli as their tracks, while a truncated Myo10 used its native antiparallel coiled-coil to traffic to the tips of filopodia. Swapping lever arms between the Class 7 and 10 myosins did not change actin track preference. Surprisingly, fusing the motor-neck region of Myo10 to a leucine zipper or oligomerization sequences derived from the Myo7A and Myo7B cargo proteins USH1G and ANKS4B, respectively, re-encoded the actin track usage of Myo10 to apical microvilli with significant efficiency.


Assuntos
Movimento/fisiologia , Miosinas/metabolismo , Domínios Proteicos/fisiologia , Actinas/metabolismo , Células CACO-2 , Enterócitos/metabolismo , Células HEK293 , Humanos , Microvilosidades/metabolismo , Miosinas/genética , Fagocitose/fisiologia , Domínios Proteicos/genética , Pseudópodes/metabolismo
3.
J Biol Chem ; 295(36): 12588-12604, 2020 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-32636301

RESUMO

Nutrient-transporting enterocytes interact with their luminal environment using a densely packed collection of apical microvilli known as the brush border. Assembly of the brush border is controlled by the intermicrovillar adhesion complex (IMAC), a protocadherin-based complex found at the tips of brush border microvilli that mediates adhesion between neighboring protrusions. ANKS4B is known to be an essential scaffold within the IMAC, although its functional properties have not been thoroughly characterized. We report here that ANKS4B is directed to the brush border using a noncanonical apical targeting sequence that maps to a previously unannotated region of the scaffold. When expressed on its own, this sequence targeted to microvilli in the absence of any direct interaction with the other IMAC components. Sequence analysis revealed a coiled-coil motif and a putative membrane-binding basic-hydrophobic repeat sequence within this targeting region, both of which were required for the scaffold to target and mediate brush border assembly. Size-exclusion chromatography of the isolated targeting sequence coupled with in vitro brush border binding assays suggests that it functions as an oligomer. We further show that the corresponding sequence found in the closest homolog of ANKS4B, the scaffold USH1G that operates in sensory epithelia as part of the Usher complex, lacks the inherent ability to target to microvilli. This study further defines the underlying mechanism of how ANKS4B targets to the apical domain of enterocytes to drive brush border assembly and identifies a point of functional divergence between the ankyrin repeat-based scaffolds found in the IMAC and Usher complex.


Assuntos
Proteínas de Transporte/metabolismo , Enterócitos/metabolismo , Microvilosidades/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Células CACO-2 , Proteínas de Transporte/genética , Adesão Celular , Células HEK293 , Humanos , Camundongos , Microvilosidades/genética , Complexos Multiproteicos/genética , Proteínas do Tecido Nervoso/genética
4.
J Biol Chem ; 295(28): 9281-9296, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32209652

RESUMO

Specialized transporting and sensory epithelial cells employ homologous protocadherin-based adhesion complexes to remodel their apical membrane protrusions into organized functional arrays. Within the intestine, the nutrient-transporting enterocytes utilize the intermicrovillar adhesion complex (IMAC) to assemble their apical microvilli into an ordered brush border. The IMAC bears remarkable homology to the Usher complex, whose disruption results in the sensory disorder type 1 Usher syndrome (USH1). However, the entire complement of proteins that comprise both the IMAC and Usher complex are not yet fully elucidated. Using a protein isolation strategy to recover the IMAC, we have identified the small EF-hand protein calmodulin-like protein 4 (CALML4) as an IMAC component. Consistent with this finding, we show that CALML4 exhibits marked enrichment at the distal tips of enterocyte microvilli, the site of IMAC function, and is a direct binding partner of the IMAC component myosin-7b. Moreover, distal tip enrichment of CALML4 is strictly dependent upon its association with myosin-7b, with CALML4 acting as a light chain for this myosin. We further show that genetic disruption of CALML4 within enterocytes results in brush border assembly defects that mirror the loss of other IMAC components and that CALML4 can also associate with the Usher complex component myosin-7a. Our study further defines the molecular composition and protein-protein interaction network of the IMAC and Usher complex and may also shed light on the etiology of the sensory disorder USH1H.


Assuntos
Calmodulina/metabolismo , Membrana Celular/metabolismo , Enterócitos/metabolismo , Cadeias Leves de Miosina/metabolismo , Síndromes de Usher/metabolismo , Animais , Células COS , Células CACO-2 , Calmodulina/genética , Membrana Celular/genética , Membrana Celular/patologia , Chlorocebus aethiops , Enterócitos/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Cadeias Pesadas de Miosina/metabolismo , Cadeias Leves de Miosina/genética , Miosina Tipo II/metabolismo , Síndromes de Usher/genética , Síndromes de Usher/patologia
5.
Arch Iran Med ; 20(3): 153-157, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28287809

RESUMO

BACKGROUND: Recent genome-wide association studies (GWAS) in European populations have indicated that the rs12526453 polymorphism located in phosphatase and actin regulator 1 gene (PHACTR1), mapping to chromosome 6p24 and rs7865618 polymorphism in the cyclin-dependent kinase inhibitor B antisense RNA 1 gene (CDKN2B-AS1) on 9p21.3 are associated with coronary heart disease (CHD). This study was carried out to investigate the association of these polymorphisms and CHD in an Iranian population. METHODS: In the present case-control study, 420 patients with CHD events were recruited from the population of the Tehran lipid and glucose study (TLGS); 407 healthy controls matched for age and sex were selected from the same population. The SNPs rs12526453 and rs7865618 were genotyped using amplification refractory mutation system-polymerase chain reaction (ARMS-PCR). RESULTS: The allele frequency of both SNPs deviated from Hardy-Weinberg equilibrium. The C allele frequency of the rs12526453 (68.5%, P = 0.11) and A allele of the rs7865618 (68.8%, P = 0.09) were the most prevalent alleles in both the case and control groups. The results indicated a significant association between the presence of risk alleles of rs7865618 and CHD in the TLGS population (P = 0.03; OR: 1.73; CI95%: 1.04 - 2.88). CONCLUSION: Due to the importance of chromosome 9p21 region and its relation with cardiovascular disease, the allelic pattern of its variation should be studied in different populations. The relation between this polymorphism and cardiovascular disease in the studied population confirms the importance of this region.


Assuntos
Doença das Coronárias/genética , Proteínas dos Microfilamentos/genética , Infarto do Miocárdio/genética , RNA Longo não Codificante/genética , Idoso , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Irã (Geográfico) , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
6.
Birth Defects Res ; 109(2): 169-179, 2017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-27933721

RESUMO

BACKGROUND: Single genetic variants can affect multiple tissues during development. Thus it is possible that disruption of shared gene regulatory networks might underlie syndromic presentations. In this study, we explore this idea through examination of two critical developmental programs that control orofacial and neural tube development and identify shared regulatory factors and networks. Identification of these networks has the potential to yield additional candidate genes for poorly understood developmental disorders and assist in modeling and perhaps managing risk factors to prevent morbidly and mortality. METHODS: We reviewed the literature to identify genes common between orofacial and neural tube defects and development. We then conducted a bioinformatic analysis to identify shared molecular targets and pathways in the development of these tissues. Finally, we examine publicly available RNA-Seq data to identify which of these genes are expressed in both tissues during development. RESULTS: We identify common regulatory factors in orofacial and neural tube development. Pathway enrichment analysis shows that folate, cancer and hedgehog signaling pathways are shared in neural tube and orofacial development. Developing neural tissues differentially express mouse exencephaly and cleft palate genes, whereas developing orofacial tissues were enriched for both clefting and neural tube defect genes. CONCLUSION: These data suggest that key developmental factors and pathways are shared between orofacial and neural tube defects. We conclude that it might be most beneficial to focus on common regulatory factors and pathways to better understand pathology and develop preventative measures for these birth defects. Birth Defects Research 109:169-179, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Regulação da Expressão Gênica no Desenvolvimento , Defeitos do Tubo Neural/genética , Neurulação/genética , Anormalidades Múltiplas/metabolismo , Anormalidades Múltiplas/patologia , Animais , Fenda Labial/metabolismo , Fenda Labial/patologia , Fissura Palatina/metabolismo , Fissura Palatina/patologia , Biologia Computacional , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mineração de Dados , Desenvolvimento Embrionário/genética , Redes Reguladoras de Genes , Humanos , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Camundongos , Mutação , Tubo Neural/anormalidades , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Defeitos do Tubo Neural/patologia , Organogênese/genética , Transdução de Sinais , Fator de Transcrição AP-2/genética , Fator de Transcrição AP-2/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...